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Abstract

The aim of this paper is to characterize one-complemented subspaces of finite codimension in the
Musielak—Orlicz sequence spalge We generalize the well-known fact (Ann. Mat. Pura Appl. 152
(1988) 53; Period. Math. Hungar. 22 (1991) 161; Classical Banach Spaces |, Springer, Berlin, 1977)
that a subspace of finite codimension jin 1< p < oo, is one-complemented if and only if it can be
expressed as a finite intersection of kernels of functionals with at most two coordinates different from
zero. Under some smoothness conditior#os (¢,,) we prove a similar characterizationlin In the
case of Orlicz spaces we obtain a complete characterization of one-complemented subspaces of finite
codimension, which extends and completes the results in Randrianantoanina (Results Math. 33(1-2)
(1998) 139). Further, we show that the well-known fact that a one-complemented subspace of finite
codimensionir,, 1<p < oo, is anintersection of one-complemented hyperplanes, is no longer valid
in Orlicz or Musielak—Orlicz spaces. In the last section we charactégizpaces, k p < oo, and
separatelyo-spaces, in terms of one-complemented hyperplanes, in the class of Musielak—Orlicz and
Orlicz spaces as well.
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0. Introduction

We adopt here the standard notations from Banach space theory. Given Banach spaces
XandY by L(X, Y) we denote the space of all linear bounded operators ¥dmY, and
if X = Y then it is denoted by (X). As usual symbol kefl) is reserved for the kernel
of a linear operatof, T* for a conjugate operator df, andld for an identity operator. If
Y is a closed subspace of a Banach space € L(X, Y) is called aprojectionwhenever
Ply = Id, thatisP? = P. The set of all projections fron{ ontoY will be further denoted
by P(X,Y). Itis clear that ifY # {0}, then for anyP € P(X,Y), |P||>1. A subspace
Y of a Banach spack is calledone-complementeifithere existsP € P(X, Y) such that
Pl =1

One-complemented subspadésf a Banach spack have the nice property that any
operator fromL(Y) has a linear extension onto the wholeXfvith the same norm. It
is easy to see and very well known that any closed subspadea Hilbert spaceH is
one-complemented and that in any Banach space, each one-dimensional subspace is one-
complemented. In general however, there are not too “many” one-complemented subspaces.
For example, by the classical Kakutani theorem (se¢H)ga Banach spacé of dimension
>3 which is not a Hilbert space has a two-dimensional subspace and a hyperplane which are
not one-complemented. Also[i8] it has been shownthatif4 p < oo, p #2,and(Q, X, p)
is a nonatomiar-finite measure space, then there is no one-complemented subspace of
L, (L, X, p) offinite codimension. The same resultis true for real separable rearrangement-
invariant spaces ofd, 1] not isometric tal» [20].

In the case of sequence spaces, the situation is different. By a result of Bohngsiblust
a linear subspacéof lﬁ,”) (R" with thel,-norm), 1< p < oo, p # 2, is one-complemented
if and only if Y can be represented as an intersection of kernels of functionals having
at most two coordinates different than zero. It has been later generalized to infinite di-
mensional spaces,, 1<p < oo, andco. In fact, following Theorem 2.a.4. ifiL6], any
one-complemented subspacel pfor g is the closure of a linear span of disjointly sup-
ported elements, which easily implies the necessary part of the Bohnenblust result, that
every one-complemented subspace,dr cg is an intersection of kernels of functionals in
ly,1/p" = 1—1/p, or I, respectively, with at most two coordinates different than zero
(see alsfb,7]). One-complemented hyperplanegiandcg have been completely described
in [4], and projections onto subspaces of finite codimensidg.ihave been considered in
[2]. For results concerning more general sequence spaces like Orlicz or Lorentz sequence
spaces sed 9,20]and references there.

The aim of this paper is to study one-complemented subspaces of finite codimension in
Musielak—Orlicz sequence spaces. We consider here only the real case.

Preliminaries contain basic facts on projections and Musielak—Orlicz sequence spaces,
as well as some technical definitions and results that will be of use later.

The main results of the paper are contained in Section 2. In Theorem 2.7 we present, under
a smoothness conditiqi¥) introduced in the preliminaries, a complete characterization of
one-complemented subspaces of Musielak—Orlicz sequence spaces of finite codimension
in terms of so callegbroper representatiorf these subspaces (see Definition 1.7). This
characterization in the case of Orlicz spaces has a simpler form and is stated in Theorem
2.10 and Corollaries 2.11 and 2.12. These results are extensions to Musielak—Orlicz spaces
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including nonseparable ones, of the known characterization in Orlicz separable spaces given
in [19]. They are proved using a different technique thad 8j, which allows us to remove

the assumption made there, that a basic vector belongs to the subspace of finite codimension.
It should be pointed out however that our technique requires a certain smooth assumption
on @ (condition (S)), which limits the class of Musielak—Orlicz functions generating the
spaces. On the other hand conditiéh is not so restrictive: Proposition 1.4 shows that for

an arbitrary Musielak—Orlicz spaég there exists a Musielak—Orlicz spalgeisomorphic

to /g and such that? satisfies conditioris). We finish the section with some corollaries

on one-complemented hyperplanes/gnand with a new proof of a characterization of
one-complemented subspaces of finite codimensidp, it < p < oo, given in[6].

In Section 3 we show that a finite intersection of one-complemented hyperplahges in
must also be a one-complemented subspace (Theorem 3.1). We also provide (Theorems
3.2 and 3.3) examples of both Orlicz and Musielak—Orlicz spaces such that the converse
statement does not hold. It shows that the result triig ih< p < oo, that a subspace of finite
codimension is one-complemented if and only if it is an intersection of one-complemented
hyperplane$6,7], cannot be extended to Orlicz and thus also to Musielak—Orlicz spaces.

In Section 4, a characterization bf-spaces, k p < oo, (Theorem 4.1) ané-spaces
(Theorem 4.5) in the class of Musielak—Orlicz spaces, hence in Orlicz spaces as well, is
given in terms of one-complemented hyperplanes.

1. Preliminaries

Let N, Z, R stand for the natural numbers, integers and real numbers, respectively. Let
(X, || II) be a Banach space and le0: € X. Afunctional f € X* of norm one is callea
norming functionalor supporting functional) of xvheneverf (x) = ||x||. Recall also that
0#x € X is said to be amoothpoint whenever its supporting functional is unique. We
say thatX is smoothif every element of its unit sphere is smoothYli a nonempty subset
of X then

Yt={feX*: fly =0}
By spariY] we denote the linear subspacexotpanned by.
The first two lemmas, crucial in our investigations, are well known. We include their
proofs here for the sake of completeness.
Lemma 1.1. Let Y be a closed subspace of a Banach spacEh¥nP € P(X,Y) has
norm one if and only if for each# y € Y there exists an element f er(P))*, which is

a norming functional foly. If y € Y is a smooth point of X then f is uniquely determined.

Proof. We first observe thaf P|| = 1 if and only if for anyy € Y, zero is the best
approximation toy in V = ker(P). Indeed, if| P|| = 1 then for any € X,

lx — (Id — P)x|I<|[P|dist(x, V)<[lx — (Id — P)x|,
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which implies that disty, V) = | y| for anyy € Y. Conversely, if zero is the best approx-
imationtoy = Px inV,x € X, then(I/d — P)x is the best approximation toin V. Hence
foranyx € X,

[Px]| = llx — (Id = P)x||<[lx]l

and so| P| = 1.

Recall also that given a subspa¢ef X andx € X \ V with dist(x, V) =d >0,v e V
is the best approximation toin V if and only if there existsf € V- which is a norming
functional forx — v.

We complete the proof by applying the above observationg te ker(P), v = 0 and
O£yeY. O

The next result provides a representation of a projection on a subspace of finite codimen-
sion (see e.d4]). Let, as usualy;; = 0if i # j andd;; = 1.

Lemma 1.2. Assume X is a normed space and¥etc X be a subspace of codimension
n.Let{f1,..., fu} € Y+ be abasis o+, and suppose e P(X, Y). Then there exist
uniquely determinedh, ..., z, € ker(P) such that

fi(zj) =6ij

and

Px =x — Z fi(x)zi

i=1

forx € X.

Proof. SinceY' = sparfi,...f,] andX = Y & ker(P), for anyz € ker(P), if

fi(z) = 0fori = 1,...,n, thenz = 0. This shows thatfilkerp), - - - » fulker(p) are
linearly independent. Hence there exist uniquely determinged ., z,, € ker(P) such that
fi(zj) =9 fori, j=1,...,n Setforx € X,

Ox=x—Y fix)z.

i=1

Note thatQ|y = Ply = Id|y andQ|kerp) = 0, sinceQz; = 0fori =1, ..., n. Hence
Q = P, which shows our claim. [
Also the following simple fact will be frequently used.

Lemma 1.3. Let X, Z be two normed spaces and [Et: X — Z be a linear surjective
isometry.Then a subspackE C X is one-complemented in X if and onlyZifY) is one-
complemented in Z.

Now we present some introductory facts on Musielak—Orlicz spaces. A funttion —
[0, +00) is said to be at®rlicz functionif ¢(0) = 0, ¢ is strictly increasing and convex.
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By ¢* we denote its conjugate function in the sense of Young, that is

¢* (u) = sup{uv — ¢p(v)}, u=0
v>0

and we notice tha#™ is an extended real-valued convex functionglf:) = (1/p)u?,

1< p<oo, theng*(u) = (1/p)ul’, where 1/p+ 1/p’ = 1. Further, a sequencd =

(¢,,) of Orlicz functions¢,, will be called aMusielak—Orlicz functiomvhenevewp, (1) = 1

for everyn € N. By @* = (¢;) we will denote its conjugate function.

Letlp denote the space of all real-valued sequences. With each Musielak—Orlicz function

@ we can associate a mappipg : lo — [0, +oo] defined by

(0.¢]
po) =Y b, (1xal),
n=1
wherex = (x,) € lp. Given a Musielak—Orlicz functiom, let/y denote the corresponding
Musielak—Orlicz space, that is

lg ={x €lp: lim pgy(ix) = 0}.
A—0

If a sequenceP = (¢,) is constant, that igp, = ¢ for everyn € N, thenlg is an
Orlicz sequence spa@d further it will be denoted by,. The spacé, equipped with the
Luxemburg norm

lxll = llxll¢ :=inf{Z>0: pg(x/H<1}

is a Banach space. Recall also that given Musielak—Orlicz functioes (¢,) and¥ =
(), the spaceés andéy coincide with equivalence of norms if and onlyfiis equivalent
to ¥, that is, for somek, 5 > 0 and(c,) € ¢,

¢, (Ku)<y,,(u) + c¢,, whenever v, (u)<o
and
Y, (Ku) < ¢, () +c,, whenever ¢, (u)<o.

Observe that the assumptiah, (1) = 1 for everyn € N is not a real restriction on
Musielak—Orlicz function®. In fact, for every sequencé = (¢,), where¢,, are Orlicz
functions, there exists a functioh = () with (1) = 1 and such thalp is isometric
toly. Itis enough to take, (1) = ¢, (ant), whereg, (a,) = 1 for everyn € N.

We will also consider here the finite dimensional spdg@s defined oriR™ analogously

aslg. The spacég") can be identified with the subspacédgtonsisting ofalk = (x,) € lg
such thatx,, = 0 foralln>m + 1.

If (f;) is a sequence of elemenfsin /g, then by f;; we denote the coefficients gf,
thatis f; = (fij).

An important subspace @§, called thesubspace of finite elemeraad denoted byt g
is defined as

he ={x €lg : pyp(ix) < oo for anyi > 0}.
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It is well known thath¢ is a closed separable subspacégofvith the one-unconditional

basis consisting of the standard unit vectgrs= (0, ..., 1;,0,...). Itis easy to see that

for everyx € hg, ||x|| = 1if and only if pg(x) = 1. Moreoverhgy = Ig if and only if

either the dimension df; is finite or ¢ satisfies a growth condition calléd [11,12,16].
Recall that for every € 4+, the functional

fy(x) = Z XnYn, X =(xy) €lo,

n=1

is bounded ortlg, || ||¢) and is called aegular functional. We denote bRy the set of all
regular functionals oig. The space®g and/ g+ are order isomorphifl0,21]and so by
usual identification we often writ¢, = y. We say thatfs is asingular functionalon ¢
wheneverfs(x) = 0 for everyx € hg. The set of all singular functionals dg will be
denoted bySg. It is well known[10, Lemma 1.1 and Theorem 2 @iat

(Ip)" = Rp D1 So.

More precisely, for eaclf € (I¢)* there exist uniquely determinedf) € Rgp ands(f) €
S& such that

f=r(f)+s(f)

and

1A= llr(ON+IsCOII-

It is clear that the operatorsands are linear projections af)* onto Rg andSg, respec-
tively. SinceR g andi g+ are order isomorphic we will identifiy( f) with an element of 3+,
and thernr(f) = (r(f),). More information on Musielak—Orlicz spaces one can find in
[17,16, vol. 1],[8,11,12, 21,22].

An Orlicz function ¢ is said to satisfy conditioris) whenever¢ is differentiable on
[0, ), ¢(1) = 1 and bothp and¢’ vanish only at zero. We say thatsatisfies condition
(S) if ¢ fuffills (s), ¢” is continuous o1i0, co) and it vanishes only at zero. We also agree
that a Musielak—Orlicz functio® = (¢,,) satisfies conditioris) or (S) whenever alkp,,
satisfy(s) or (S), respectively. Notice that the assumptienon ¢ implies thatp’ is already
continuous (sefl3, Theorem 1, p. 156]).

Condition(S) on @ is not very restrictive. In fact we have the following result.

Proposition 1.4. For any Musielak—Orlicz functio® = (¢,) there exists a Musielak—
Orlicz function? = (y,,) equivalent to®? and satisfying conditioiiS). Consequentlythe
identity operator fronig to [y is an isomorphism.

Proof. Lety,(t) = [o ¢,)/udu andy,(t) = [{ 7,()/udu. Itis clear thaty, are
Orlicz functions of clas€’?(0, 0o). Takingd, € (0, 1)such thad "> ; 7, (8d,) < oo, define

t —_
U (0) = / atufuda,
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where

3 () = [ 7dr’/3dD if 0<r<dj,
" N V;z(dn)dn/3+ V() — Vn(dn) if 1>d,.

Itis easy to see that both derivatiugs andy, are continuous and they vanish only at zero.
Thus¥ = (¥, satisfies conditioriS). Since¢,, are convex, botly, andy, are convex.
Hence all quotient®,,(r)/t, x,()/t andy, (¢)/t are increasing functions with respect to
t > 0. Therefore

1
¢n(t/2)<//2 by () /u du<y, (<, ()

t
as well as
In (/2 <7, (<0, (1)
for all 1>0 andn € N. Hence
I (t/D<¢, /<y, (21)

and sol” = (y,) and® = (¢,) are equivalent. Sincén (u)/u is increasingy,, are convex
and by the similar argument as above we get

$u (/)<Y (<, (1)
for all n € N ands>0. We also have for>d,,
G, (Y (d)dn + 7, ()<Y, (2dn) + 7, ()<, (20) + 7, (1) <2, (2)
and forr>2d,,,
G () 27,(1) — 7, (dn)=7,(1) — 7, (t/2)=(1/2),(®).
Therefore, fom € N, 1>2d,,
(1/2)7, (<P, (1)<27, (20).
It follows that forr>2d,, n € N,
(1/27, ()<, ()<, (20) <, (2)<2y,,(41).
Thus for anyn € N andr >0,

7, (<20, (2) +7,(2d,) and
W, (20)<2y, (4t) 4+, (4d,) <2y, (4t) + 2y,(8dy).

But Y2 7,,(8d,) < oo, which shows that” = (y,,) and¥ = (y,,) are equivalent. Since
I' is equivalent top, the proof is complete. [J

The following description (sefd0, Lemma 1.7 and Theorem 1.9]) of smooth points and
supporting functionals ify will play an essential role in our investigations.
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Theorem 1.5. Let® = (¢,) be a Musielak—Orlicz function satisfying condition. Then
eachO#x = (x,) € hg is a smooth point ilp. Moreover,the supporting functional of
0#x = (x,) € he is aregular functionalf, determined by = N(x)/Cy € I+, where

N(x) = ((sgnx,) ¢, (|xal/l1x 1)
andC, = 22021 |xn|¢;1(|xn|/”x”)
From Lemma 1.1 and Theorem 1.5 one can deduce the following result.

Corollary 1.6. Let @ satisfy condition(s) and letY C I be a closed subspace &f. If
P € P(lp, Y) is a projection of norm onehen for everyf0 £y € Y N hg andz € ker(P),
N (y)(z) = 0. Moreover,if [ = hg then the converse implication also holds true.

Henceforth in the paper all Orlicz and Musielak—Orlicz functions which are considered
are required to satisfy at least condition.

Finally let us agree that for given sequence- (x,), supp(x)= {n € N : x, #0} is its
support and for € N,

Pix =(x1,...,x;,0,...) and (Id—Pj)x=1(0,...,0,xj11,xj42,...).

The following definition that “normalizes” the representatigh, . . ., f,} of a subspace
of codimensiom given in Lemma 1.2, allows us to formulate many further results in less
technical ways.

Definition 1.7. Let Y C Ip or ¥ C l}’)") be a subspace of codimension Let
k = dim(r(Y1)). ThenF = {f1,..., f,} C Y1 is calleda proper representation of Y
if the following conditions are satisfied.

(1) Fislinearly independent, spafi] = Y+ andr(f;) = 0 fori>k + 1 andk < n.

(2) r(fi)j :5,‘]' fOfi,j =1,...,k

In particular, iflg = he orYis a subspace of a finite dimensional spég’é, then all
functionals are regular, and 8o= n andr(f;) = f;.

Lemma 1.8. LetY ClporY C lﬁb’") be a subspace of codimensionThen up to isometry
oflg or lg"), there exists” ¢ Y which is a proper representation &f.

Proof. Setk = dim(r(Y1)). If k = 0 then any basis of - is a proper representation of

Y. If k> 0, chooseFy = {f1, ..., fr} C Y+ such that(Y+) = spanir(F)]. If k <n, let

F» = {fis1...., fn) be any basis o - N ker(r) (F» = @ if k = n). Put F3 =

F1 U F». Observe thatt - = spariFz] andr(fj)) = Ofori = k+1,...,nif k<n.
Sincer(f1),...,r(fx) are linearly independent, there existg < --- <m; such that
deflr (f;)m;li,j=1,...k 0. By a permutation of integers, to which there corresponds a per-
mutation of the sequence,,) and an isometric isomorphism &f, it may be supposed that

m; =i,i =1,...,k Infact observe that any permutatien N — N induces a linear
isometryTy : lp — lg, defined aslzx = (xg(n)), Where®, = (¢, ,)). Hence for any
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i=1,...,k there exists;1, ..., aj; such that

k
Z ayr(f));j = 0ij.

=1

Setnowforj = 1,...,k g = Y~ aif; and letF = {g1,..., g} U F2. ThenF is a
proper representation af. [

Lemmal9.LetY C Ip Or Y C lg") be a subspace of codimension n such that
k = dim((Y1)) > 0. SupposeF = {f1,..., f,} C (lp)* is a proper representation
of Y.Let P € P(lg, Y) be a projection of norm one and lef, . . ., z, € ker(P) be given
for Fand P by Lemma.2.Thenforj>k +l1andi =1, ...,n,

S Lz sgnir () N Ar () i1/ 1y D
¢(1/11y; 1) ’

Zij =

where forj >k + 1

k

yj=¢ej— Z"(fl)j e.

=1

Proof. Letj>k+ 1andi € {1,...,n}. SinceF is a proper representation &f y;
Y Nhge. By Corollary 1.6,N (y;)(z;) = 0 which gives the required equation]

Lemma 1.10.Let ®, P,Y,F, n,k andzy, ..., z, be as in Lemmd..9. ThendetM #0,
where M is ak x k matrix with the ith rown; = (z;1,...,zik),i = 1, ..., k. Moreover,
forany j>k+1,z;; =0foralli =1,...,nifandonlyifr(f;); =Oforalli =1, ... k.
Consequently,

n k
L supp@z) = |J suppr(f))-

j=1 j=1
Proof. Ifdet M =0, thenm; = Y/_; ., aym; for somei € {1,.... k} anda; € R. By
Lemma 1.9z; = > /_; ;; @z, and so

n

fizy= > afi@) =0,

I=1,1#i

which contradicts the choice of. Hence det/ # 0. Now if z;; = O for somej >k + 1 and
alli =1,...,n,then again by Lemma 1.9,

u = (sgr(r (f0) NP1Ur (O i1/1y;1Ds - -, s (fi) D (r (i) j1/1y51)

is a solution of the homogeneous system of linear equations given by the Maffixus
u = 0, and since)/, vanish only at zero;(fj); =0fori =1,..., k. On the other hand, if
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r(fm)j = 0forsomej>k +1andallm =1,...,k then by Lemma 1.%;; = O for all

i =1,...,n Moreover, sincé- is a proper representation¥find detM # 0,
n k
(L....kC (U supp(@) n (U suppr(f,-)>.
j=1 j=1
Hence

n k
LJ suppz) = ) suppr(£)).

j=1 j=1
as required. [J

Lemma 1.11. Supposefi, ..., fr in lg+ are such thatPy f1, ..., P fi are linearly in-
dependentLetm > k. If v € P,(p) N ﬂle ker(f;) and |lv] = 1 then the elements
P(f1),... P} fr, N(v) are linearly independent.

Proof. By the first assumption?; f1, ..., P, fx are linearly independent. Suppose, on a
contrary, thatV(v) = PN (v) = Zle a; P fi. Then by Theorem 1.5,

k k

Co =N =) a(Pifd®) =Y afi(v)=0,

i=1 i=1
which is a contradiction. (J

Lemma 1.12. LetY C I be a subspace of codimension n andidet dim(r(Y+)) > 0.
Let F = {f1,..., fx} be a proper representation of Y such thdif;) # 0 for some; e
{1,...,n}. AssumeP € P(lp,Y) and letzs,...,z, € kerP be given for F and P by
Lemmal.2.If z; andr(f;) have bounded supports foe=1, ..., n, then||P| > 1.

Proof. Suppose that the supportsgfandr(f;) liein {1,...,}foralli =1,...,n. It
is clear that there existse (Id — P;)(l¢) such thal|z|| = py(z) = 1 andf;(z) #0. Then
zand)"! ; fi(z)z; have disjoint supports. Hence

pa(P2) = po (z - ﬁ(z)zi) = po(2) + P@(Z ﬁ(z)z,-).
i=1 i=1

Now f;(z) # 0 and the vectors; are linearly independent so that the second term on the
right is non-zero. Consequently,

pp(P2) > pp(z) =1=|zl,

which shows thaff P|| > 1, as required. [J
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2. One-complemented subspaces of finite codimension

The main results of the paper are contained in this section. Theorem 2.7 provides a com-
plete characterization of one-complemented subspaces of finite codimension in Musielak—
Orlicz space$y for @ satisfying condition(S). This characterization is expressed in terms
of proper representations of these subspaces (see Definition 1.7 and Lemma 1.8). As a corol-
lary, in Theorem 2.10, (see also Corollaries 2.11 and 2.12) we obtain a characterization of
such subspaces in Orlicz spage which is an extension and completion of Theorem 7
in [19]. Furthermore, we give some corollaries on one-complemented hyperplahges in
and reproduce (Corollaries 2.18 and 2.19) the well known result on one-complemented
subspaces if},, 1< p <00, p # 2, presenting a shorter proof than tha{@jf

We start with the following result, which for Orlicz spadég) has been communicated
to the authors in a slightly different form by Neuba{&s].

Theorem 2.1. Let @ satisfy conditionS) and letY be a subspace kéf) of codimension

k<m—2,whichis one-complemented@”. If G = {g1, ..., gk} isaproperrepresentation
of Y thenforany =1, ..., k, g; has at most two coordinates different from zero.

Proof. LetQ € P(lg”), Y) have norm one and l&t = {g1, ..., gt} C Y be a proper

representation of. ThenY = ﬂle ker(g;). By Lemma 1.2, there exist uniquely deter-
minedws, ..., wi € ker(P) satisfyingg; (w;) = d;; and such that

k
Ox =x— Z gix)w;, xe€ lgﬂ).
i=1
Assume, on a contrary, that has at least three coordinates different from zero for some

je{l, ...k} Sincelfg') andlg’;) with @; = (¢4,)) are isometric for any permutation
cgof {1,...,m}, andG is a proper representation &f by Lemma 1.3 we can assume that
g1p#0forp=1k+1,k+2.

Setting fori € {1, ..., k}, Di = g1 k+18ik+2 — 81.k+28i,k+1, define

Ai={i=1,....,k:D; =0} and Ay ={1,...,k}\ A1.

Observe that 1 A; and A, may be an empty set. Again by Lemma 1.3, without loss
of generality we can assume thai = {1,...,[} with /<k. Set as in Lemma 1.9, for
j=k+1k+2,

k
Yj=¢€¢j— Z 8pi€p
p=1

andfori =1loreach € {{+1,...,k}if | <k, we defineu; € Y, by

u — _SikA2YkA1 7 8i kA 1Vk42
i= .
l8ik+2Vk+1 — &ik+1Vk+2) I
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Observethat, if =1orie{l+1,...,k} then
[|uil| = 1 and u;; = 0.

Now, let us consider for = 1, ..., k the following problem.

Problem (i). Minimize a function

m

x = N)w;) =Y sgnx;)e’; (|x;hwi;

j=1

defined forx € R under the condition&C;) given by

m
gAi(x):ZgijpZO, j:].,...,k,
p=1

pop(¥) =Y ¢;(lx;)) =1.

j=1

Observe that, by conditiof$) and Corollary 1.6, it € R satisfiegC;), thenN (x)(w;) =

0. This means that the functiowi(-) (w;) has a conditional minimum at Let us consider
at first this problem for = 1. Observe that; satisfiegC;) and by Lemma 1.11 applied to
ui, g, j =1,..., k, andmwe get that the rank of the matrid (u1) = k + 1, where for
x=(x1,...,x,) € R",

811 ce 81m
My — | e
( ) 8k1 cee 8km
/
sgnx1¢? (|x1)) e SONX Dl (1Xm )

Since® satisfies conditions), the functionsv (x)(w;) andp4(x) are continuously differ-
entiable with respect to € R™. Hence by the Lagrange Multiplier Theorem there exist
ap, p=1,...,k+ 1 (depending om1), which satisfy the following system of equations

k

Ej = ¢[(uijDwij+ Y apgpj + akr159nus)¢(jus;) =0, j=1,....m.
p=1

Since¢1(0) = ¢7(0) = 0 andg;; = &;; fori, j = 1,...,k, E1is reduced tai; = 0.
Multiplying E; by wy; for j =1, ..., m and summing up these equations we get

m k m m
Y b uhwi; + %(Z gpjwl./) tane1 Y SANuL) @ (uzjw;
j=1 p=2 \j=1 j=1
m k
=Y ¢z hwi; + Y apgpwi+ an 1N (1) (w) = 0.
Jj=1 p=2
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Observe thag,(w1) = 0 for p = 2, ..., k, and by the conditioriS) and Corollary 1.6,
N(u1)(w1) = 0. Hence the previous equality is reduced to

m
> ¢lurhw; = 0.
j=1
Sincedfjf vanish only at zeray1 x+1 # 0 andu1 x+2 # 0, we get
w1 x+1 = 0 andwy 42 = 0.

Moreover, ifj € Ap, i.e. j>I 4 1, thenuy; # 0 and consequently,;; = 0.

Now take anyi € Aj. Analogously as above, minimizing the functidf(x)(w;) with
respect toc € R™, we obtain

m
> ¢luahwi =0 (2.1)
j=1
fori = 1,...,1. Consequently, we have that fpre A; = {1,...,l} andj € Ay =
{t+1,...,k}

Wp k4l = Wpit2 = Wp; = 0. (2.2)

Let nowi € A,. Minimizing the functionN (x) (w;) and arguing as in the case= 1, we
get

m
> ¢l hw? =0. (2.3)
j=1

Consequently, in view af;; #0for j € Ay ={1,...,l}andi € {{ +1, ..., k} we have
w;; = 0. (2.4)

Observe that by Lemma 1.10, applied® g1, . .., gk andws, .. ., wg,
defw;;l; j=1,..k #0.

By (2.2) and (2.4), détv;;]; j=1,... #0. By Lemma 1.9 applied tav;, i = 1,...,],
Jj=k+1andj = k + 2 we obtain

d1(181k+1l/ k41l = P1(lg1k+21/ e+l = O,

and consequentlyr x+1 = g1.x+2 = 0. This contradiction finishes the prooflJ
In the next result we consider infinite dimensional spaces.

Theorem 2.2. Let @ satisfy condition(S). If Y is a one-complemented subspacégobf
codimension rthenY * consists of only regular functionalsloreoverjf F = {f1, ..., fu}
is a proper representation of Y then for any= 1,...,n, f; = r(f;) has at most two
coordinates different from zero.
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Proof. Let P € P(lg,Y) with |P|| = 1 and letF = {f1, ..., f,} C Y* be a proper
representation df. Then obviouslyy = (7_; ker(f;). By Lemma 1.2 there exist uniquely
determined, ..., z, € ker(P) satisfying f;(z;) = J;; and such that

n
Px=x-Y fi)z. xelp.
i=1
Now we show thatf; are regular functionals, that i5f;) = 0 fori = 1,...,n. Set
k = dim@r(Y1)). If k = 0, then for anyj € N, ¢; € Y, sincefiln, = s(fi)ln, = O for
i =1,...,n Consequently, by the conditiqi¥) and Corollary 1.6, for every € N and
i=1,...,n

N(ej)(zi) = ¢;(1)zj =0,

which yieldsz; = O foralli =1, ..., n, which is impossible.

Now supposeék > 0. Since{f1, ..., f,} is a proper representation( f;); = 9;; for
i,j=1,...kandr(f;) =0fork + 1<i<n, if k <n. First we show thatfoi = 1, ..., k,
r(f;) have at most two coordinates different from zero. Suppose thisis not true. By a suitable
isometry oflp we can assume thaf f1)x+, #0 for p =1, 2.

We will further reduce the proof to finite-dimensional case and apply Theorem 2.1. Set

fori=1,...,k g = (fi1,....r(fi)k+2) andv; = (zi1, - . ., Zi k+2)- Define
k
Y1 = ﬂ ker(g;)) C R¥2 andVy = sparvy, ..., v] C RF2,
i=1
It is clear that codimiY1) = k. Moreover, by Lemma 1.10, def;]; j—1
dim(V1) = k. Note that

¢ #0, and so

.....

Rk+2 — Y16 V1.

Indeed, assume for a contrary thatthere exist. . , ax € RsuchthatGtv = Zf.‘zl a;v; €
Y1 N V1. Setting

it yields that 04 w = Px42(Z) € Y N hg. Now, by Corollary 1.6,

k+2 wi|
0=Nw@) =) |w,l¢) (—’)
= Jwl
andsow; =0forj =1,...,k+ 2, by condition(S). However

k

i=1
by Lemma 1.10. Hencg = 0 fori = 1, ..., k, which contradicts the fact that # 0.
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Now let 0 € P(I%+2, Y1) be a projection with keiQ) = V1. It is easy to see that if
0#y € Y1,thenj = P2y € Y Nhg. Thusforany G4 y € Yrandw = Y5, aiv; € V1,
by Corollary 1.6 we have

k+2

0=N@®@ = sgny)ed;(Iy;l/Ilyhw; = N()().

j=1

Now, applying the converse statement of Corollary 1.BitoV; andl’gfz, weget||Q| = 1.

Since the codimension &% iskand{gs, ..., g«} iS a proper representation Bf C lg”z),
so by Theorem 2.1 we get

0=g1it1=r(fOr+1 = gri+2 = r(fk42,

which is a contradiction.
Consequently, by Lemma 1.18;, ...z, have bounded supports. Sing€|| = 1, by

Lemma 1.12,5(f;) = O fori = 1,...,n. This shows that anyf € Y' is a regular
functional.

By the first part of the proof if f1, ... f,,} is a proper representation ¥fthen for any
j=1,....n f; = r(f;) has at most two coordinates different from zero. The proof is
complete. [J

Remark 2.3. It is well known[2] that inl/,, a one-complemented subspace of finite codi-
mension can be an intersection of kernels of functionals with both regular and singular parts
different than zero. By Theorem 2.2, this is not the case in the spaces

Note also that in the proof of Theorem 2.2 the assumptionlaintains at least one
basic vectog; is not needed (compare with Theorem 718]).

Lemma 2.4. LetY C I be a subspace of codimension n such thatconsists of regular
functionalsLetF = {f1, ..., f,} be a proper representation &f. Assume that there exists
I € Nsuchthat J!_; supp(f) = {1,...,/}andputn = [+1.ThenY is one-complemented

in /g if and only ifY; = ¥ N 14" is one-complemented Iff".

Proof. Here we identifylé;m) with the subspace of those € [¢ such thatx = P, x.
Suppose that is one-complemented iip and letQ be a projection fronigy ontoY of norm
one. Letzy, ..., z, be given forQ andF by Lemma 1.2. In view of Lemma 1.10,

U supp(f) = U supp(z) = {1, ..., 1.

j=1 j=1

Hence in view of the form 0@ given in Lemma 1.2, it is clear that the restriction@to
lfp’") is a projection of norm one fromfbm) onto Y.
Suppose now tha®,, is a projection of norm one fromfg") ontoY;. Define

Ox = Quu(Py(x)) +Ud — Pyp)x, x €lp.
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Observe tha@Q is a projection fronig onto Y. We shall show that Q|| = 1. Suppose on
the contrary, thaf Q|| > 1. Then there exista € /¢, such thatjw| = 1 and|Qw| > 1.
By definition of the Luxemburg norm afy, it is clear that

Pp(Qw) >12pgp(w).

Hencepg(Qw) = pgp(Qm(Puw)) + pg((Ud — Pyp)w) > pgp(Puw) + pp((ld — Ppiw),
and so

Pe(Qm(Pnw)) > pp(Prw).
By Lemma 1.2 applied t@,, andF, there exist uniquely determined . .., z,, € lfpm) such
that
Omx =x — i fi@z, xely.
j=1
Moreover, by Lemma 1.10,
LJ supp(f) = | supp(z) = {1, ....1}.
j=1 j=1
Hence for any: € lg, fj(Pux) = fj(Px)for j=1,...,n, and so
Om(Pnx) = Qm(Prx) + xmem.
Sincepp(Prw)<pgp(w)<1, there exists>0 such that
pe(Pw +tey) = 1= | Pw+tey].
Settingw = Pyw + tey,, We havepy () = |[w] = 1, w = P,w € lfp’") and
Pe(Qm(W)) = pe(Qm(Pr(W)) + Wmem) = pa(Om(Pw)) + pg(tem).

Butpg(Qm(Pnw)) = pgp(Qm(Piw))+pg(Wnen) > pe(Punw) = pp(Piw)+pg(Wmen),
and so

Po(Om(Pw)) > pg(Prw).

Hencep (0 (W) > pgp(Prw)+pg(ten) = pep(w) = 1, which contradicts the assumption
1Oml =1 O

Theorem 2.5. LetY C lg be a subspace of codimension n such tfiatconsists of reg-

ular functionals.Let F = {f1, ..., f,} be a proper representation af. Assume that for
i=1,...,n, fjj #0forat mostongi>n + 1. Letfor j e N
Cj=1{i: fij #0}.

ThenY is one-complemented jnif and only ifY; = (¢, ker(f;) is one-complemented
inlg for any j>n + 1 such thatC; # #. '



J.E. Jamison et al. / Journal of Approximation Theory 130 (2004) 1-37 17

Proof. Supposé_J/_; supp(f) = {1,...,1} and letm = [ + 1. In view of the previous
lemmawe need to show ourtheoremonlyinthe casg’beupposé!is one-complemented
in l(fb’") andJ # {1, ..., n}, where

J={i=1,...,n:supp(f) =i}l

Thus f;; #0 for somej>n + 1 andi = 1,...,n Fixanyj>n + 1 with C; # #. Let

P e P(lg"), Y) be a projection of norm one. Let, .. ., z, € ker(P) be given forP andF
by Lemma 1.2. First we claim that

U supp(f) = U supp(z) = C; U {j}.

ieCj ieCj

Indeed, leti € C;. Definew; € lg”) by wix = zix fork ¢ C; U {j} andw;, = 0 for
k € Cj U {j}. We shall show thai; = 0. Suppose, this is not true. Since for any C;,
fx(zi) =0, w; € Y. Sincez; € ker(P), by Corollary 1.6, N (w;)(z;) = 0. By definition of
wil

0= N(wi)(z) = Z sgn(wix) by (wik |/ llwi N zik/ Cu;

k¢Cj
= Z sgn(wir) ¢y (wik |/ llwi Nwix/ Cw; = llwill,
k¢C;

which is a contradiction. Hence for any= C;, supp(z) C C; U {j} and consequently

L supp(z) € C; U ().

iECj

We shall prove now that for anye C;, z;; # 0. Suppose, on the contrary thgf; = 0 for
someig € C;. Sincef;(zx) = ;i fori, k € C;, and supp(fi = {i, j}, we get 7o+ = O for
k € C;j\ {io} andz;y;, = 1. Note thaty = ¢; — Y ;_; fijex € Y.Again, by Corollary 1.6
we get

0= N()(zig) = —SGN fio)bi, (I fiojl/l1zID

and consequently;,; = 0, which is impossible.

Ifi e C;andC; = {i}, thenz;; #0. Indeed, it;; = 0, then by Corollary 1.6 applied to
andz; we get—q’)’j(l/llyll)zij = 0, which is impossible sincg ; satisfies condition(s) and
zij #0.1fi € C; and cardC;) > 1, then for anyt € C; such thak # i, we have f{z;) =
Zki + fijzkj = 0. This shows that,; # 0, sincez;; # 0 and f;; # 0. Consequently,

|J supp) o ¢; U}
ieCj
By the previous part of the proof and Lemma 1.10 we have
|J supp(h) = ) supp@) = C; U {j)
iGCj iECj

as required.
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Consider now forj € N the operator

Qjx=x—-Y fix)z. xely” (2.5)

IEC_/'

which is a projection ontd’; = ﬂiecj ker(f;) such that ketQ;) = V; = spariz; : i €
C;]. We shall show tha Q|| = 1. In view of Corollary 1.6, it is enough to prove that
N(y)(v) =0foranyv € V; andy € Y;. Lety = (y1,..., ¥, yi+1) € Y and set

w; = Z yiei +yjej +tmem,

lECj

wheret,, >0 is chosen so thatw; || = |lyll. Since for anyi ¢ C;,

supp(f) N ( U Supp(f)) =0,

kECj

w; € Y. Since||P| = 1andzy,...,z, € ker(P), by Corollary 1.6, N(w;)(z;) = O for
i=1,...,n Hence

> sany0) o (el /Iy Dzie +sgny )@ (1y;1/1y1Dzij = O,

kEC]'

sincem ¢ (J;_;supp(z) = UJ;_, supp(f) by Lemma 1.10. Observe that, fore C;,
N(w;)(z;) = N(y)(z;), and thus we have tha{(y)(v) = 0 for allv € V;. Thus, we
have showed thaV (y)(v) = 0 forallv € V; andy e Y;. Applying now Corollary 1.6 to
P;, Vi, Y;we have thaf Q;|| = 1.

Now assume that foi>n 4+ 1 with C; # @, Y; is a one-complemented subspacég&.
We shall show that is one-complemented. Suppose at first that {1, ..., n}. Then

Y={y=0):y»=0i=1...,n

and obviously(/d — P,)x is a norm-one projection ontB. Let now for any; € J; =
{k=n 4+ 1 : Cy#¥}, Y; be one-complemented ilg”) and letP; € P(lgpm), Y;) be a
projection of norm one. Note thdl; = {f; : i € C;} is a proper representation Bf. Let
2 i e Cj} C lfpm) be given by Lemma 1.2 foF; and P;. Note that,C; N C; = ¢

1

fori£j,JNC; =@foranyj e ; and(UjEJ1 C.,) UJ ={1,...,n}. Define then for

i=1,...,n,

0 .
wiZ{Zi,l‘ECj,]GJl
ei, 1€lJ.

The operator

n
Px=x— Z fiow;,, xe€ lg"),
i=1
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is a projection ont& and ke(P) = spafjws, ..., w,]. We shall show thaf P|| = 1. Let
y € Y and takew; = z(]) forsomei € C;, j € J1. Theny € Y; andzl(j) e ker(P;). Since
I Pjll = 1, by Corollary 1.6,N(y)(z§-")) = 0. If w; = ¢; theni € J andin that casg; =0
foranyy = (y,) € Y. ThusN (y)(w;) = N(y)(e;) = 0. Therefore for any € ker(P) and
anyy e Y, N(y)(v) = 0. Sincelfpm) = h(q;"), | P|| = 1 by Corollary 1.6, and the proof is
complete. [J

The next theorem gives a necessary and sufficient condition for the spacessidered
in the proof of Theorem 2.5 to be one-complemented.

Theorem 2.6. Letfori =1, ..., n, f; be regular functionals ofy such thatf;; = d;; for
i,k=1,...,nand f;; #0forat mostongi>n + 1.Letfor j ¢ N

Ci={i:fij#0 and Y;= () ker(fi.

ieCj
Assuming thaC; # ¢, the subspacé’; is one-complemented Ig if and only if for all
i € Cjthere exisD# b; € Rsuch that forallr € [0, A;]
( > i fith + ¢,-<t)>b,- = ¢;(1fijt)/fij. i €Cj,
kECj

whereA; = 1/[|yjll andy; =e; — > icc; fijei-

Proof. Inview of Lemma 2.4 we assume thigt= & is finite dimensional. Suppose also
for simplicity thatj =n 4+ 1,C; = {1,...,n} andA = A;. Let now the equation in the

hypothesis be satisfied. After differentiation we getifer 1, ..., n andr € [0, 1]
| fenralt / t
fens1ld) ( () )
(Z T gl ) Uyl ) )
| finyalt
= SQN fi.n41) 9] (f—“) . (2.6)
”yn-i-l”
Definefori =1,...,n
Zin+l = bi, zij = —fjn+1bi for j#i, zii = 1— fint1bi (2.7)
and let
n+1

Zi = Z ZikCk-
k=1

It is clear thatf;(z;) = d;;. Hence the operator

n
Px=x— Z fix)z;, xelg,

j=1
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is a projection fronig ontoY ;. We shall show thdfP|| = 1. By Corollary 1.6, itis enough to
prove thatV (1) (v) = O foranyu € Y; andv € V = sparizy, ..., z,]. Ifu € Y}, thenu =
Uni1Yn+1+(Id— P, y1)y forsomey € lg. Ifu, 1 = 0, then supp(um|J;_; supp(z) = 0
and it is clear thatV (u)(v) = 0. If u,+1 # 0, then without loss of generality, we assume
thatu,+1 = 1. Then there existse [0, 1] with 1/|lu|| = /|| y,+1]l- By (2.6)

Z SGN(— fi.n+1) (— frn+Dbi P (| fionsal /Nlull) + ¢y g (11l by
ki
+S9N(— fi.n+- 1) P; (| finsal/Nlul) (X = fin1bi) = 0. (2.8)

Thus by (2.7) we obtainfar=1,...,n

Nu)(z;) = Z 2ik SIN— fin+ D Dk (| frns1l /1Y) + b1 13/ 11y Zins1 = 0.
k=1
(2.9)

ConsequentlyN (u)(z;) = 0,fori =1, ..., n. In view of Corollary 1.6 P| = 1.

Now assume that there B € P(lp, Y) with |P|| = 1. By Lemma 1.2 applied to
P, Yandfi,..., f,, Pisdetermined by, ..., z, € ker(P), satisfyingf; (z;) = d;;. Set
bi = zi n+1. Sincefi 11 #0, by Lemma 1.10); # 0. Observe thaty, . . ., z, satisfy (2.7).

Now, letr € (0,1]and letu = y,11/t. Thenu € Y and 1/||u|| = ¢ /|y.+1]. By Corollary
1.6, (2.9) is satisfied. By (2.7), (2.8) holds true, and consequently, (2.6) is satisfied. Finally
integrating (2.6) ovef0, 7], 0<r<1, we obtain the required equality[]

Now we are ready to present a complete description of one-complemented subspaces of
[ with finite codimension. For the sake of clarity and simplicity, the description will be
provided for subspaces that are expressed in terms of their proper representations. In fact
the following result is a direct consequence of Theorems 2.2, 2.5 and 2.6.

Theorem 2.7. Let @ satisfy conditionS) and letY be a subspace igf of codimensiom.

Supposethak = {f1, ..., fu}isaproperrepresentation of YhenY is one-complemented

if and only if the following conditions hold.

(a) The subspac&* consists of only regular functionalin particular, f; = r(f;) for
everyi =1,...,n.

(b) Foranyi = 1,...,n, f; has at most two non-zero coordinates afig = J;; for
i,j=1...,n
(c) Letforj e N
Cj={i: fij #0}.

Then for anyj>n + 1with C; # ¢ and for anyi € C; there exisb;; > 0 such that for
allr [0, A;j]

( Z O fijt) + ij(t))bij =o¢; (| fijtD/1fijl,

kEC(,’

whereA; = 1/||yjll andy; =e; — > icc; fijei-
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As acorollary of the above theorem we will obtain a characterization of one-complemented
subspaces of finite codimension in Orlicz spaces. In this case the characterization achieves
a simpler form. But at first we will need two technical lemmas. Recall that two Orlicz func-
tions ¢y, ¢, : RT — RT are equivalent at zero whenever there exist 0 and positive
constantsVf;, m;, i = 1,2, such that for € [0, ug]

m1gq(mat) <o) <M1d1(Mat).
The following two lemmas for a single Orlicz function are well known (&#,19]).

Lemma 2.8. Let ¢;, i = 1,2, be Orlicz functionsSuppose that there exidt b, b1 >0
such that for allu € [0, A] anda € (0, 1)

$1(u) =bgo(u) and  Py(au) = brady(u). (2.10)

Letp = log,((b1/b)a). Theng, (u) andu? are equivalent at zerahat is there exist positive
constantsn, M such that

muf <¢; (u)<Mu? (2.11)
forallu € [0, A]andi =1, 2.

Proof. Observe that by (2.10¥%(au) = acp,(u) for u € [0, A], wherec = b1/b. Let
mgo be the smallest natural number satisfyif <A. If a”° <u<A, then

(h1(@") /AP uP <Py () <P (A)<(P1(A) /a™P)uP.
If a1 < u<a™ for somem >mg then by (2.10) and definition qf

1) < ¢1(@™) = cady(@" ™ =+ = (ca)" P, (a™°)
= $(@™)a "™ VP /(cay™ L (py(a™) [ (ca)™ T yuP .

Analogously,

$1() > §1(@" ) = cagy@”) = -+ = (ca)" 0P, (")

= (¢1(@")a")/(ca)™ = (¢1 (@) /(ca)™ yu”.

Setting

m = min{$1(a"0)/A?, $p1(a")/(ca)"* 1}
and

M = maxi$1(A)/a", §1(a")/(ca)" ),
by the previous inequalities we obtain for alle [0, A], mu? <¢(w)<Mu”. In view of
(2.10), we easily get (2.11) and complete the prodfl

Lemma 2.9. Let ¢4, ¢, be Orlicz functionsSupposer, b € (0, 1), a <b, are such that
there is now > 0 with the property that, b € {w¥ : k € Z}. Moreover let for someA > 0
there exist, ¢4, ¢, > 0 such that for any: € [0, A]

O1(u) = cpo(u), p1(au) = cqapo(u), Pp1(bu) = cpbd,(u).
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Then there exisk; >0, i = 1,2,and1<p < oo, such that
¢;(t) = Kit?, t€l0,A],i=1,2

Proof. Itis enough to show our assertion only . Lets : (—oo, InA] — R be given
by

h(t) = (In dy(e))".
By the equality in the assumption, fore (—oo, In A],

P1(e'b) = (cpb/c)pq(e)

and consequently,
In 1" M) = In(epb/c) + In py(eh).

After differentiation of both sides of the above equality we get
h(t+1Inb) =h(r) forte (—oo,InA]

and analogously,
h(t +Ina) =h(r) fort e (—oo,InAl.

We claim thath is a constant function o6—o0o, In A]. Indeed, ith is not constant, then in
view of the above equalities it must be periodic@mo, In A], and thus Irb = k Ina for
some integek 1. Henceb = a¥, which contradicts the assumptions@andb. So his a
constant function o—oo, In A] and consequently l; (¢’) = pt + D for some constants
p, D. Henceg, (u) = ePuP on[0, A] with p>1, which proves our assertion[]

The nextthree results complete the well known characterization obtaifid] jmheorem
7, as well as extending it to a nonseparable case. The first theorem provides necessary and
sufficient conditions for a subspace of an Orlicz space with finite codimension to be one-
complemented.

Theorem 2.10. Let ¢ satisfy conditionS) andY C [, be a subspace of codimension n.

LetF = {f1,..., fu} be a proper representation of Yhen Y is one-complemented jif

and only if the following conditions hold.

(a) The subspac& ' consists of regular functional$n particular r(f;) = f; fori =
1,...,n

(b) Foranyi =1,...,n, fi has at most two coordinates different from zero gpd= ¢;;
fori,j=1,...,n

(d) Letforj e N

Cj={i: fij #0}.

Then for anyj>n + 1with C; # ¢ and for anyi € C; there exist;; > 0 such that for
allt €[0,A;]

(1 fijl) = cijl fijl @),
whereA; = 1/||yjll andy; =e; — > icc; fijei-
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Proof. In view of Theorem 2.7 we only need to show that condition (d) is equivalent to
condition (c) in the case of Orlicz spaces. Assume first that condition (c) of Theorem 2.7
holds true. Since, = ¢ for alln € N, comparing the right-hand sides of the equalities in
condition (c) we get

O fij/fijluw) = bijl fij/bij frjlp(u)
foralli #k € Cj andu<|f;|A;. Thus for anykg € C; and anyu<| fio;|A;,

D 1bkj fii /broj froj| W) + b)) + u/| fioi ) = S/ 1broj fros-

keCj,k #ko

or equivalentlyp (| fi,j1t) = ckojl fiojlp(t) forall ¢ e [0, A;] and somey,; > 0. Hence
(d) holds.
Now assume that condition (d) holds. Then faz [0, A}]

> bl = bijd(l fij1D)/1 £,

keC;

whereb;; = (1 + 2 kec; ckj|fkj|) /cij. The proof is complete. [J
Notice that the numberg; in condition (d) above are multipliers gfin a neighborhood
of zero (cf.[14]). Moreover, itis clear that iff;; are either zero or one, then this condition
is always satisfied. In view of Lemma 2.8 it appears that it is the only possibility in the case
when¢ is not equivalent to a power function. Thus we can state the following corollary.

Corollary 2.11. Let¢ andY satisfy the assumptions of Theogi®.If ¢ is not equivalent
to a power function at zerdhen Y is one-complemented inif and only if conditionga),
(b) and (d) are satisfiedwhere

(d) |fijl €e{0,1}foranyi =1,...,nand;j € N.

By Lemma 2.9 and Theorem 2.10 we also obtain the following observation.

Corollary 2.12. Let ¢ and Y satisfy the assumptions of Theo2aD. Suppose also that

¢ is an Orlicz function which does not coincide to a power function in a neighborhood of
zero.ThenifY is a one-complemented subspadg,ithen conditionga), (b)and(d”) must

be satisfiedwhere
(d”) There existsv > 0 such that

|fijl € (wk : ke Z).

Hyperplanes, the kernels of functionals, are of special importance. The next few corol-
laries provide characterizations of some one-complemented hyperplanes.

Corollary 2.13. Let f = e1 + foe2, Where f 20 and letA = 1/||(— f2)e1 + e2]|. Then
Y = ker(f) is one-complemented i if and only if there exists # 0 such that for every
u €0, A]

D11 f2lu) = cfapo(u).
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Proof. By Theorem 2.6Y is one-complemented if and only if there existg 0, such that

(P1(1f2lu) + ()b = P4 (| f2lu)/ f2

for O<u<A. Hence

d1(f2lu) (L — f2b) = bf2gy(u).
Consequently, + fob #0 andc = b/(1 — fob) satisfies the required equation]

Corollary 2.14. Let® satisfy condition(S) and suppose that for any# k, ¢; and¢, are
not equivalent at zerdChen giverD# f € (Ip)*, Y = ker(f) is one-complemented ig
if and only if f is a regular functional having exactly one coordinate different from zero.

Proof. If f = (f,) is aregular functional with exactly one coordinate different than zero
then clearlyy = ker(f) is one-complemented. Now, If = ker( f) is one-complemented
then by Theorem 2.2f = r(f) andf has at most two coordinates different from zero.
Assuming thatf = e1 + f2e2 and f> # 0, by Corollary 2.13¢; must be equivalent tg,,
which contradicts the assumptiond.]

Example 2.15. Let [y be a Nakano space, thatds (1) = 7/, 1<p; <oo, for j € N.
As a direct consequence of Corollary 2.14pif> 2 andp; # p; for j #1, then ke(f) is
one-complemented ity if and only if f; # 0 for exactly onej € N.

Corollary 2.16. Supposep(t) = Dt? for someD >0, p=1 on [0, a], where[0, a] is
the largest interval having this propertif. a < ¢*1(1/2) = 1/|le1 + e2||, then for any
0< f <1, kerle1 + fe2) is not one-complemented in Orlicz spdge

Proof. Suppose keke; + fe2) is one-complemented iy, for some O< f < 1. By Corol-
lary 2.13, there exists> 0 such that

¢(fu) =cfPw), O0<u<l/|fer+ ezl

Then by the same argument as in Lemma 2.9, the funétion = (In ¢(e'))’ is either
constant or periodic oi—oo, In A], whereA = 1/|le1 + e2||. Since¢(t) = Dr” on
[0, a], his constant or(—oo, Ina] and consequentlyp(zr) = Dt? on [0, A], which is a
contradiction. [J

Corollary 2.17. Supposep(t) = Dt” on[O0, a], Wherea>¢_1(1/2) = 1/|le1 + e2|| and
let[0, a] be the largest interval having this proper§uppos® < f<1.Thenker(e1 + fe2)
is one-complemented ip if and only ifA y = 1/[le1 + fezll<a.

Proof. Suppose kee1 + fe2) is one-complemented ifg, and A ¢ > a. Reasoning as in
Corollary 2.16, we gep () = Dt” on[0, A r], which is a contradiction. Now suppose that
Ar<a and take any € [0, A r]. Obviously

o(fu) = P fpu),
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since Gu<Ay<a. Thus by Corollary 2.13, k€e1 + fe2) is one-complemented
in ld" OJ

Finally, we apply Theorem 2.2 and Corollary 2.13 to provide a different proof of a well
known resul{6] on one-complemented subspaces of finite codimensign(ih< p < o),
p # 2. First, we consider the case of hyperplanes.

Corollary 2.18. Let 1< p <oo, p#2. Then givenf < [,, Y = ker(f) is one-
complemented ify, if and only if f has at most two coordinates different from zero.

Proof. LetY be one-complemented and first suppose that2. By Theorem 2.2 has at
most two coordinates different than zero. Now supposepl< 2, and letP € P(l,,,Y) be
a projection of norm-one. By Lemma 1.2, applied?t@andf there existg € ker(P) such
that f(z) = 1 and forx € I,,,

Px =x— f(x)z.

Moreover, by Lemma 1.10, supp(z= supp(f). Note, that the adjoint operatBfx =
x —z(x) f, x € Iy, is a projection of norm one froi, onto kelz). Sincep’ > 2, by the
previous part of the proof, has at most two coordinates different from zero, which shows
thatf has also at most two coordinates different from zero.

Suppose now thdt has exactly two coordinates different from zero. Without loss of
generality we assume th#t = 1 andf> > 0, and put = fzpfl. Since the function — ¢”
is p-homogeneous, the equation in Corollary 2.13 is satisfied forayand thus kerf)
is one-complemented iy. [

Corollary 2.19. Suppose&’ C I, is a subspace of finite codimensiavherel < p < oo,
p#2.LetF ={f1,..., f,} be a proper representation of Yhen Y is one-complemented
inl, ifand only if for everyi =1, ..., nthere is at most ong¢>n + 1 such thatf;; # 0.

Proof. SupposeY is one-complemented if,. If p > 2, then by Theorem 2.2, for any
i =1,...,nthereis at most ong>n 4 1 with f;; 0. Now, let 1< p < 2 and suppose for
a contrary that there exisjse {1, ..., n} andn + 1<I < k such thatf;; # 0 and fjx #O.
Without loss of generality we assumethat 1,k = n+1,/ = n+2andf1 ,+1, f1.n+2>0.
Letzy, ...z, €, be given forP andF by Lemma 1.2. Setting

n n
w=ei1— ) finrie; and z=eu1— ) finize),
j=1 =1

itis clear thatw, z, 7z, w + tz € ker(P), t>0. By Corollary 1.6, applied t@, 7z, w + ¢z,
respectively, we obtain the following equationsfoe 1, ...,n

n
p—1
Zin+l = Z Zik Sy 10
k=1
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n
-1 -1
P 2= zikltfeni2)?
k=1
n
-1 -1
Zingl 1Pz g2 = Z Zik (fren+1 + tfens2)?
k=1
By Lemma 1.10, the matrikl with rowsm; = (z;1, ..., zin) iS invertible, so the system of
equations

n

D St + thins2)” ™t = finrD)” = (tfinp)? Haix =0
k=1

has only a trivial solution. This in particular yields the following equation.

(fLat1/2DP 7 4+ tfrnr2/2DP 7 = (Funsr + thins2) /2P~ for 10.

Since O< p — 1 < 1, by strict concavity of the function — s?~%, we get £ ,41 = 0 or
f1.n+2 =0, which is a contradiction.
Now suppose thal = ﬂf}zl ker(f;), V\_/herefj_ € l_,,/, fij=0yfori,j=1...,n
If f; =ejforj=1,...,nthenld — P, is a projection ont’ of norm one. So assume
fij #0forat mostong >n + 1. We need to show thatis one-complemented. By Theorem
2.5, we canreduce the problem to the case of subspaces considered in Theorem 2.6. Thus we
canassumethatforeach=1,...,n, fi,41#0. Letfori =1,...,n,z; = Z;’i} (zi)jej
be a solution of the systelE;) of linear equations given by:

Zii + fi,n-i-lzi,n—HL =1,
zij + fin+1zins1 =0 for j#i,

n
(Z _Sgr(fj,rl+l)|fj,n+l|p_1zij) +Zin+1= 0. (212)
j=1
By Lemma 1.11, applied to = >>%_; (= fjnt+1)ej + eny1 € Y, there exists exactly
one solution of systeni£;). Moreover,z; ,+1#0 fori = 1,...,n, by the assumption

fint1#£0. Putfori =1,...,n, b = zjn41. Sincefori =1,...,n,zi;i =1 — fint1bi
andz;; = — fja4+1b; for j #i, by (2.12), we get

n
(Z | finsal? + 1)b,- = | fimsal”/ fins1.

j=1

Since the function — ¢” is p-homogeneous, by Theorem 2YGs one-complemented in
I,. In fact, the projection with kernél = sparizy, ..., z,1, wherezy, .. ., z, is a solution
of the system{E;) has norm one. [J

3. Intersections of one-complemented hyperplanes

From the results of6,7] it follows that a subspacg C I,, 1<p < oo, of finite codi-
mension is one-complemented if and onlyYitan be represented as an intersection of



J.E. Jamison et al. / Journal of Approximation Theory 130 (2004) 1-37 27

one-complemented hyperplanes. As we will see below, in Musielak—Orlicz spaces satisfy-
ing condition(S) only the sufficiency part of this statement holds true. However, in general
the intersection of one-complemented hyperplanes need not be one-complemented. Indeed,
let X = léi), f1=1(1,0,0,0), fo =(1/21/6,1/6,1/6) and letY = ker(f1) N ker(f2).
Recall[4] that for any f = (f1,..., fn) € li") with || fll1 = 1,Y = ker(f) is one-
complemented inlé’g) if and only if | f;|>1/2 for somei = 1,...,n. Moreover,Px =
x— f(x)z, x € lg,’), with z = (1/f))e;, is a one norm projection ondd. Hence ketf;),
i = 1,2, are one-complemented i We also observe that = ker(f1) N ker(f3), where
f3=1(0,1/3,1/3,1/3). By [4], ken1/3,1/3,1/3) is not one-complemented zé?. We
conclude thaY is also not one-complementedXn applying the following result.

Let £ e 1"V \ {0} and letY = ker(f). Leth e I, |lhlly = 1, [ha|>1/2. Set
Y1 = ker(0, f) Nker(h) C lf,Z). Then the norm of minimal projection frolﬁfl) ontoYis
equal to the norm of minimal projection fro/lﬁ) ontoY1[15, Theorem 1.11].

Observe here thaty = e1 = z2/2, where fori = 1,2, z; determine the minimal
projections onto kefrf;) (see Lemma 1.2). The vectassare linearly dependent, and as we
will see below it is a different situation than ig.

Theorem 3.1. Let @ satisfy condition(S). Suppose” C I is a subspace of codimension
nandY = (;_; ker(f;), wheref; € (Ip)*. If ker(f;) is one-complemented ip for each
i=1,...,n,thenY is one-complemented in

Proof. Let ker(f;) be one-complemented iip for eachi = 1, ..., n. Notice that iff

is a functional on/g, then multiplyingf by a suitable numbert 0 we obtain a proper
representation of a subspace €r. Thus we can apply Theorem 2.2 to each subspace
ker(f;). Hence eacly; must be a regular functional, that/igf;) = f;, such that it has at
most two coordinates different from zero. By Lemma 1.2, for gaehl, . . ., n there exists

zi € lp such thatf;(z;) = 1 andQ;x = x — fi(x)z;, x € lp iS @ norm one projection
onto kel f;). Sincef; = r(f;)fori =1,...,nand codintY) =n, f1,..., f, arelinearly
independent. Set

K = [ supp()

j=1
andm = 1+ cardK. By a suitable permutation &€, which induces an isometry &f and
by Lemma 1.3, without loss of generality we can assumekhat {1, ..., m — 1}. Let for
i=1...,n

gi = (f‘ll?af‘lm) and wi = (Zilv"-vzim)

andY,, = (_; ker(g;). Itis clear that,, = Y mlfl’;’). Following the proof of Lemma 2.4,
it is easy to see that we need only to show thatis one-complemented 'ﬂg"). Let

D ={je| ] supp(g):y; =0foranyy e ¥,}.
i—1

It is not difficult to observe that carB<n. Further we shall consider two cases.
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Casel: SupposeD = (. We claim that in this case for any € {1,...,n} and
Iji<jo< ... <jk<n

k
cardU supp(g;)=k + 1.
i=1

Assume on a contrary, that the above inequality does not hold for éomé1, ..., n}
and I<j1 < jo < ... < jr<n. Without loss of generality, we can assume tljat= i for
i=1,...,k Sincegs, ..., g are linearly independent,

k
cardU supp(g) = {i1, ..., ik =k

j=t

and delg;;,1;=1,..k #0. Then for anyy € ¥, and anyj = 1, ..., k, the only solutions

,,,,,

of
k
0=2g;(») =Y Yiji:
=1
arey;, = Oforalll =1, ...,k which is a contradiction. Thus we proved the claim and in
particular, foranyj =1, ..., n, card supp(g) = 2.
Now we shall show by induction that the elements j = 1, ..., n are linearly inde-
pendent. For = 1 this is obviously true. Now assume that any- 1 element subset of
{wi, ..., w,}is linearly independent. Set for anye K,

Cj={i=1,...,n:gij7é0}.

Then there existg € K with cardC;) = 1. In fact, if this is not true, then without loss of
generality, we can assume

2<cardC;<cardCj41

foranyj =1,...,m — 2. Observe that foj > 1, cardC;\C1>1. If cardC;\Cy = 0 for
somej > 1thenC1 U C; = Cy and so

cardsupp(g) Usupp(g) ={1, jh =2

forsomei £/ € {1, ..., n}, i #1[, which contradicts the previous part of the proof. Hence,
in particular, card”1 U C2>3. Repeating this procedungimes we get

n
card( J Cjzn+1
Jj=1

which contradicts the fact that

n
Jcici....n.
j=1
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Consequently, there exisise {1, ..., k} such thatC; = {ip}. Now applying the induction
hypothesis we get thaiy, . .., wjy—1. wiy+1, - . . w, are linearly independent. Observe that
by Lemma 1.10 applied to k&y;) andw;,

j¢ U supp(e) = | J supp(w).
i #io i #io

Sincej € supp(g,) = supp(w,), wi, ¢ spanw; : i #igl, which shows thatvy, ..., w,
are linearly independent.

In order to show that’,, is one-complemented, s& = spanws,...,w,]. Since
giw) = fiz) = 1, foranyi = 1,...,n, VN Y, = (0}. Thusly” = V & Y,, and
the natural projectio® ontoY,, is bounded. We will show thatQ || = 1. Take any € Y,
andi € {1, ..., n}. Sincey € ker(g;) C hg, applying Corollary 1.6 t@;|r» and ke(g;),
we getN(y)(w;) = 0. ConsequentlyV(y)(v) = 0 for anyv € V. By Corollary 1.6,
Q0| = 1. ThusY,, is one-complemented 'vlé,’"), and sov is one-complemented .

Casell: Let D #¢. If cardD = n, then

Y ={y €ly”:y;=0forje D)
and obviously it is a one-complemented subspadg’%f If card(D) < n, set
I={i=1,...,n:supp(g) N D =@}

Note that, if supp(g N D # @, then supp(g® C D. Hencel # @. Applying the first
part of the proof taZ = (,; ker(g;), we can findQ € P(lfp’"), Z) of norm one. Set for
X = (1., %m) €157, Rx = (Rx)1, ..., (Rx)»), where(Rx); = 0if i € D and
(Rx); = x; in the opposite case. Finally it is easy to see that R o Q is a norm one

projection oflg”) ontoY,, and the proof is complete.[J

The last two results in this section show that in some Musielak—Orlicz and Orlicz spaces
there exist one-complemented subspaces of finite codimension which cannot be represented
as an intersection of one-complemented hyperplanes.

Theorem 3.2. Let @ satisfy condition(S). Assume also that there exi§ts ug < 1/2such
that

¢ju) = ¢1(u) .1

forall j € N andu € [0, ug]. Assume additionally that for any, k € N, j #k, there is
t € (ug, 1/2) such that

G (1) # Qr (). (3.2)
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Then there exists a one-complemented subspacé of finite codimension which cannot
be represented as an intersection of one-complemented hyperplanes.

Proof. Puta, = | Z'I'.:l ej||. Observe that;, — oo; if not, then for everyn € N,
1/a, > a > 0 for someu € [0, ug], and then for every € N

1= ¢;1/a)> Y ¢;(a) =ndy(a).

j=1 j=1

which is a contradiction. Now, fix € N with 1/a, <ug. Putfori = 1,...,n, b; =
1/(n+ 1), fi = e; + eny1 and lety = (7_; ker(f;). Observe that for any € [0, uo], fi
andb; satisfy the equality in Theorem 2.6. Since

n

llensr— Y ejll<1/llanll <uo.
j=1

by Theorem 2.6Y is one-complemented i .

Now we shall show that cannot be represented as an intersection of one-complemented
hyperplanes. First we claim that for any= 1, ..., n, ker(f;) is not one-complemented in
lg. Sinceforany =1,...,n, || — e + e,+111<2, by Corollary 2.13

¢ (1) = c,i (1)

fort € [0, 1/2], ifker(f;) isone-complemented. Butit follows that= 1 by (3.1). However,
this is impossible in view of (3.2), which proves our claim.

Now suppose that = (/_, ker(g;), whereg; € (I¢)* andke(g;) are one-complemented
fori =1,...,n. Thenforeach = 1,...,n, g = Z?:l a;j f; for someq;; € R. By
Theorem 2.2g; = r(g;) € lp+ andg; have at most two coordinates different from zero.
This means that; = —bey + be; for somek,l € {1,...,n}, k#1 andb>0, org; =
er + eynr1 = fi forsomek € {1, ..., n}. Applying now Corollary 2.13, analogously as in
the case off; we get that kefg;) cannot be one-complemented/in This contradiction
completes the proof. [J

Theorem 3.3. Suppose that an Orlicz functighsatisfies conditionS), and suppose that
there are2 < p < oo and0 < ug < 1/2 such that foru € [0, ug]

Pu) = u?,

and[0, uo] is the largest interval having this properfyhen there exists a subspalcec /
of finite codimension which cannot be represented as an intersection of one-complemented
hyperplanes.

Proof. Take O< f<1,2<p<oc andn € N such thatd = 1/(1 + nf?)Y/? <uy.
Setting

fi=e + feyyr fori=1,...,n,
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letY = (;_; ker(f;). We shall show tha is one-complemented ify applying Theorem
2.6. Observe that

Fl/A+nfP)YP <1/@A+ nfP)YP < u.

Hence it is easy to verify that

z=—f (Z ej) +ent1

j=1

has norm(1 + nf?)Y/P. Setting fori = 1,...,n, b; = fP~1/(1 + nfP), it is easy to
check that the equality in Theorem 2.10 is satisfiedsfer [0, 1/||z||], and thusY is one-
complemented i,.

In order to show thaY cannot be represented as an intersection of one-complemented
hyperplanes, at first we prove that kén is not one-complemented for any= 1, ..., n.
But the latter is clear in view of Corollary 2.16 and the inequaligy< 1/2<1/|e1 + e2].

Now, suppose onthe contrary that= ();_; ker(g;), whereketg;) is one-complemented
foranyi =1, ...,n. By Theorem 2.2, applied far=1, ..., nto ker(g;), gi = r(g;) and
eachg; has at most two coordinates different from zero. Sinceifer 1,...,n, g =
Z?:l a;j f; for somea;; € R, g = b(—e; + ¢) for somek,l = 1,...,n, b>0 or
gi = ajrer +aix fe,r1 forsomek =1, ..., n. We observe that contains all elementgof
theformy = Cz, C € R.Itfollowsthatthere existé = 1, ..., nsuchthat atleast for some
i=1,...,n, g = ajrer +aix featr1 = air fr- Thus kefg;) cannot be one-complemented,
which contradicts the assumption and finishes the proaf.

4. Characterization of /,-spaces in the class dfp-spaces

By a result of Calvert and FitzpatriqR], if X is a Banach lattice with a Schauder basis
(e;) suchthae; Ae; = 0,andifforanys, b#0andj, k € N, j #k, ker(a(e;)* + bex)™)
is one-complemented iX, thenX is isometric tol, or cg. Here (e;)* and (e;)* denote
the corresponding te; ande; biorthogonal functionals. A similar result holds truelin
without the separability assumption, as it is proved below.

Theorem 4.1. Suppose that for any = (f,,) € 1o+ with exactly two coordinates different
from zero, ke¢f) is one-complemented ig. Then there existp € (1, co) such that

¢, (1) =1t forte[0,1], neN,
that is the identity operator is an isometry fragnto/,,.

Proof. SetA = 1/|le1 + e2]|. By our assumptions and Corollary 2.13, for ang (0, 1]
there exist®, > 0 such that for all: € [0, A]

¢1(au) = bgap,(u). (4.2)
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By Lemma 2.9, there exigf; > 0 andp € (1, 00), such thatp,(u) = K1u” foru € [0, A].
Notice thatp > 1, sinceg, (0) = 0,n € N, by condition(s). Hence for any: € (0, 1) and
u €0, A]

al§y(u) = ¢py(au) = baady(u) = (ba/br)ag(u)

and consequently, = a?~1b1. Notice that by Corollary 2.13 for any < 1/||aer + ez,
¢1(au) = Cag,(u). But, by (4.1),C = b,. Hence for any: < 1/|lae1 + e2|| andau < A,
we have

Ki(au)? = ¢q(au) = bra? ¢, (u)
which gives
¢ho(u) = (K1/by)u?.

Since for anyu € [0, 1) one can choose < (0, 1) satisfying bothu < 1/||ae1 + ez
andu < A/a, the above equality holds true for alle [0, 1]. Finally in view of ¢,(1) =
1, ¢o(u) = u? foru € [0, 1]. In a similar way we get thap, (u) = ¢,(u) = u? for any
n € N andu € [0, 1], as required. [J

From the proof of Theorem 4.1 it is easy to deduce the following result.

Corollary 4.2. Suppose that for somgk € N, k # j and anya, b #0, kerae; + bey)
is one-complemented ig. Then there exist$ < p < oo such that fo € [0, 1], qﬁj (u) =
¢k(u) =ub.

Lemma 4.3. Let @ be a Musielak—Orlicz functiorSuppose that there i) > 0 such that
foralli € Nandu € [0, ugl, ¢; (u) = Ci¢p1(u) for someC; > 0 independent of uet for
n=3,

"1
Yn=_€1+22n_1€j~
j=

Thenlim,, ||y, = 1.

Proof. Fixa>1ands<1— ¢,(1/a). Chooseig € N such that forn >no,
1/((n—1)a) < ug and(,i)/l(l/((n—l)a))/q,')l(uo) <e.Sincep; (1) =1, (f);(l/((n—l)a)) <&
foralli € N. Observe that forn >no, by convexity of¢, and the Lagrange Theorem,

po(yn/a) = ¢1(1/a)+ Y ¢;(1/((n — Da))

j=2
< $1(1/a@) + (n = D1, (1/((n = D)a))
< d1(L/a) + (n = D (1/((n = D)a)) /((n — D)a)
< ¢1(1/a) + (L/a)e <1,

wherejp € {2, ..., n}. Hence fom>no, ||y, || <a. Since|y,| > 1 for anyn>2, we get that
Iy, |l tends to one and the proof is completé.]
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Theorem 4.4. Let f,, = Z?:l ej, and suppose thdter( f,) is one-complemented i
for sufficiently large:. Then

$;(t) =1> fortel0,1],ieN,

that is the identity operator frory to [, is an isometry.
Proof. Assume that there exisigy such that ketf,) is one-complemented for every
n>no>3 and letQ,, € P(lg, ker(f,,)) be a projection of norm one. Let = (z,,;) be given
for Q, and ke f,,) by Lemma 1.2. Fixt € [0, 1/2]. Since|ey + ¢;[<2, we finds; >0

andk > n such thatw; = —uey +ue; +tjer, j =2,...,n, has normone. Itis clear that
w; € ker(f,). Consequently, by Corollary 1.6, for aniy<n and 0<u<1/2

— 2,13 0) + 20§ () = O,

which gives

@) = (zn1/znj) P1(w0). 4.2)
Now we shall show that for any, 5>0,a + b<1/2,

P1(a +b) = ¢1(a) + ¢1(b). (4.3)

Taking anya, >0, a + b<<1/2 and setting
w = 2(ae1 + bex — (a + b)es),

pp(Ww/2) = ¢1(a) + Po(b) + Pp3(a + b)<2(a + b) = 1, which implies thafjw| <2. Let
n>ng. Observe that for any € [0, 1] we can findb, > 0 such that

t/llwll = 1/llwll,

where
w; = 2ae1 + 2bep — 2(a + b)ez + brep+1.

Note thatw, € ker(f,,). Hence, by Corollary 1.6, for anye [0, 1]
211 (12a/|lw|) + 2222120/ W) = za33(12(a + b)/ | w])).

Since||w||<2, takingr = ||w||/2, and applying (4.2) we get (4.3). Now we show that (4.3)
holds true for any:, >0 with a + b < 1. Note that by (4.2) the assumptions of Lemma
4.3 are satisfied withg = 1/2. Consequently, we can choose& N such that ketf;,) is
one-complemented and

a+b <1/l

wherey, is defined by the formula in Lemma 4.3. By Corollary 1.6, analogously as above,
we get for anyt € [0, 1]

211/l =Y ¢/ = DllynlD)zn;-

j=2



34 J.E. Jamison et al. / Journal of Approximation Theory 130 (2004) 1-37
Since forn > 1,¢/(||y.ll(n — 1)<t/(n — 1)<1/2, by (4.2)
P1t/lyal) = (n = D3t/ ((n = DI ynlD))-
Takings = (a + b)||ynll, we get
Pila+b) = (n — Ddy((a +b)/(n — 1)),
and then taking/||y, || or b||y,| ast we also obtain
$1(a) = (n = Dy(a/(n — 1)) and ¢}(b) = (n — HPi(b/(n — 1)).
Combining the above equations with (4.3) we get that foramz0, a + b < 1, it holds

1@ +b)=n—Di((a+b)/(n— 1))
= —Ddia/(n — 1)+ (n — Dpy(b/(n — 1))
= ¢(a) + PL(b).

Consequently, for € [0, 1]
P1(1) = 1¢1(1).

Analogously as above, we can show that the above equality holds true for any fupgtion
Finally in view of the assumptiong; (1) = 1 and¢;(0) = 0, we obtain that); (1) = 12
forr €[0,1]. O

Theorem 4.5. Let ¢ be an Orlicz function and lef,, = Z?:l ej. Thenker(f,) is one-
complemented ify, for n>3, if and only if there exist€” > 0 such that

d(t) =Ct?, 10,1/l (4.4)
wherey, = —e1 + 3, (1/(n — 1))e;.

Proof. Suppose that for some>3, ker(f,,) is one-complemented . In a similar way
as in the proof of Theorem 4.4, we obtain thatdob>0, a + b<<1/||y.1l,

¢'(a+b) = §'(a) + ¢'(b).
Hence we conclude that for amye [0, 1/|y, |1,
@' () = ullyall¢" @/l ),
which in view of (0) = 0 immediately implies that faz € [0, 1/| y, ]I,
du) = Cu?.
Now suppose that (4.4) holds true. We claim that for agy0e ker( f,,)

.....

;max {1z;1/11zI< 271l 45
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Indeed, let = ||y, || and

n—1
A=fu=(u1,....up1) €011 u;j=1)
j=1

and letf : [0, 17"! — R be defined by

n—1
fuy=Y" dw;/o).
j=1

We show first thaf attains a conditional minimum on A at, = nTll(Z;?;i e;). We will

apply the Lagrange multiplier method. Let us definefar R,

n—1
g,(w) =f(u)+2<2 uj —1).

j=1
Consider forj =1, ..., n — 1 the system of equations
0g;(u) : : 0g:(w)
ait,- = (1/c)¢'(uj/c)+ =0 and éz ZJZ_; uj —1=0.

It is easy to see that, = n—fl(Z’};i e;) is the only solution of this system. We need still
to check the value dfat the boundary oA. We will apply the induction argument. By our
assumptions for = 3,

f(wa) =2¢(1/(2)) < p(1/c) = f(1,0) = f(O, D),

which shows that the conditional minimum is attainedvgt Now letn > 3 and take any
w from the boundary oA. Letk denote the number of nonzero coordinategvoClearly,
k <n — 1. By the induction hypothesis and the convexityfof

(n — 1>/k>

k
fw) > f(witr) =kdp(1/(ke)) = (n — 1)<n _ 1)¢’< (n —1e

> (n = Do1/((n = D)) = f(wn).

Hencef cannot attain a conditional minimum on the boundarApéo it has to attain it at
wy,. Now, let 0+ z € ker(f,). Since the spack; is symmetric, without loss of generality,
we assume thatfof =1,...,n—1,|z;|<1 = —z,. Thus

n—1 n—1
1= ;<) Izl
=1 =
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By the previous part of the proof,

n—1
1= @/ ((n=DlynlD) + @/ llyal)
j=1
n—1
= fwn) + S/ 13D Y dUzj1/Iyal) + S/ 13l
j=1

Hence 1/(14<1/ly. I, which shows (4.5).
Finally, we show that’ € P(ly, ker(f,)) given by

Px=x— fu(x)wp+1, x € l¢,

has norm one. NO\Ef}:l zj/llzll = 0, and thus by (4.5) and (4.4)

N(2)(wp41) = (Z sgr(zj>¢>/(|z,-|/||z||)> n=@2C/n))_ zj/llzll =0.

j=1 j=1

By Corollary 1.6, P|| = 1 and the proof is complete.[]
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